

PRARANCANGAN PABRIK KLOROFORM DARI ASETON DAN KALSIUM HIPOKLORIT DENGAN KAPASITAS 11.000 TON/TAHUN

Agus Rahman¹, Boy Arief Fachri¹, Istiqomah Rahmawati¹, Khusnul Khotimah¹, Noven Pramitasari¹, Yeremia Prasetya Nugroho¹, Zuhriah Mumtazah¹

¹Program Studi S-1 Teknik Kimia, Fakultas Teknik, Universitas Jember

Abstrak

Indonesia merupakan salah satu negara berkembang yang harus mempersiapkan diri untuk menghadapi era perdagangan bebas. Industri kimia merupakan salah satu industri yang memegang peranan penting dalam meningkatkan kemajuan bangsa di sektor perdagangan. Salah satu bahan kimia yang penggunaannya cukup dibutuhkan dalam industri kimia adalah kloroform. Pabrik kloroform berbahan baku kalsium hipoklorit dan aseton ini dirancang dengan kapasitas 11.000 ton/tahun dan waktu operasi 330 hari per tahun. Bahan baku yang dibutuhkan yaitu kalsium hipoklorit sebanyak 4769,29 kg/jam dan aseton sebanyak 846,71 kg/jam. Proses produksi terbagi menjadi tiga tahapan, yaitu persiapan bahan baku, pembuatan kloroform, dan pemisahan produk. Proses produksi kloroform dilakukan pada RATB pada kondisi operasi suhu 50°C dengan keseluruhan kondisi operasi berjalan pada tekanan 1 atm. Pabrik ini akan beroperasi di Kecamatan Kramatwatu, Kabupaten Serang, Provinsi Banten dengan estimasi mulai beroperasi pada 2028. Berdasarkan hasil evaluasi analisa ekonomi, dapat disimpulkan bahwa pendirian pabrik kloroform dari aseton dan kalsium hipoklorit dengan kapasitas 11.000 ton/tahun layak didirikan dengan rincian Annual Cash Flow (ACF) sebesar 93,45%, waktu pengembalian modal selama 4 tahun, Pay Out Time (POT) sebesar 1,208 tahun, Rate of Return (ROR) sebesar 84,45%, dan Break Even Point (BEP) sebesar 48,02%.

Kata Kunci: Kloroform, Aseton, Kalsium Hipoklorit, RATB

I. Pendahuluan

Kloroform (*Trichloromethane*, *Methenyl Chloride*) merupakan senyawa berwujud cairan bening dan berbau khas dengan rumus kimia CHCl₃. Dalam beberapa industri kloroform sering digunakan sebagai bahan baku dalam proses pembuatan tetraflurotilena (TFE) dan bahan baku utama pada proses pembuatan *Chlorofluorohydrocarbon* (CFC-22). Selain itu, kloroform dapat juga digunakan pada industri tekstil dan karet, serta sebagai pelarut non-polar (Mongan, 2023).

Kloroform sendiri merupakan bahan kimia yang permintaan dan pertumbuhannnya terus meningkat dari waktu ke waktu belakangan ini. Kloroform pada saat ini hanya diproduksi olehbeberapa negara saja, di antaranya Amerika, Jerman, Perancis, Korea, dan beberapa negara lainnya. Indonesia sendiri saat ini hanya mampu mengimpor bahan tersebut dari negara lain dikarenakan di Indonesia hingga saat ini belum ada pabrik kloroform yang berdiri.

Perancangan pabrik kloroform ini tidak hanya berfokus pada pemenuhan kebutuhan kloroform di dalam negeri saja, tetapi juga akan berfokus pada kebutuhan kloroform di luar negerimelalui kegiatan ekspor. Berikut data konsumsi kloroform di Indonesia dan Asia Tenggara.

Tabel 1. Data Impor Kloroform di Indonesia

Tahun	Impor (Ton)	Pertumbuhan Impor (%)
2018	27,927	
2019	50,913	82,307
2020	38,409	-24,560
2021	58,742	52,938
2022	56,756	-3,381
Total	232,747	107,305
Rata-Rata	46,549	26,826

Sumber: Badan Pusat Statistik, 2023

Tabel 2. Data Konsumsi Kloroform di Asia Tenggara

Tahun	Konsumsi ASEAN (Ton)	Pertumbuhan Konsumsi (%)
2011	162.080	
2012	157.138	-3,049
2013	150.492	-4,229
2014	136.899	-9,032
2015	125.918	-8,021
Total	732.527	-24,332
Rata-rata	146.505,4	-6,083

Sumber: IndexBox, 2023

Penentuan kapasitas produksi beberapa tahun ke depan perlu diperhitungkan untuk memperoleh kapasitas produksi yang tepat dengan menggunakan persamaan sebagai berikut.

$$m = P(1+i)^n \tag{2.1}$$

Berdasarkan perhitungan yang telah dilakukan, ditetapkan kapasitas pabrik kloroform sebesar 11.000 Ton/Tahun sehingga dapat memenuhi 20% kebutuhan di Asia Tenggara.

Pendirian pabrik kloroform dapat menguntungkan Indonesia pada sektor industri, dapat membuka lapangan kerja baru, mendatangkan devisa bagi negara melalui jalur ekspor ke beberapa negara lain, dan dapat mengurangi ketergantungan negara terhadap impor kloroform untuk kedepannya, serta dapat melakukan diversifikasi produk yang bernilai ekonomi tinggi. Dengan melihat potensi berdirinya pabrik kloroform dan dengan harapan mengurangi ketergantungan terhadap impor kloroform maka perlu dibangun pabrik kloroform di Indonesia.

II. Deskripsi Proses

Secara umum proses pembuatan kloroform dapat diperoleh dengan empat cara, yaitu:

Tabel 3. Perbandingan Proses Pembuatan Kloroform

Parameter	Klorinasi Metana	Klorinasi Fotokimia	Reduksi Karbon Tetraklorida	Aseton dan Bleaching Liquor
Bahan baku	Metana	Metana	Karbon Tetraklorida	Aseton & Kalsium
			& Hidrogen	Hipoklorit
Harga bahan baku	Mahal	Mahal	Murah	Murah
Suhu	350-400 °C	250-500 °C	200°C	50 °C
Tekanan	2 atm	-	5-79 atm	1 atm
Katalis	Alumina	-	Besi	-
Konversi	65%	90%	70-80%	87%
Kemurnian	15-30%	44%	60%	99%
Reaktor	Reaktor <i>Fixed Bed</i> Katalitik	Reaktor Fotokimia	Fluidized Bed Reaktor	Reaktor Alir Tangki Berpengaduk

Berdasarkan tabel 3, pada pra-rancangan pabrik klorofom dipilih proses pembuatan kloroform dari aseton dan kalsium hipoklorit dengan pertimbangan suhu operasi yang dibutuhkan rendah (utilitas relatif rendah), kemurnian produk tinggi, peralatan yang digunakan lebih sederhana, dan reaksi dijalankan dengan kondisi operasi yang mudah dicapai sehingga tidak memerlukan perlakuan yang rumit dan tidak membutuhkan energi yang besar (Bayu, 2013). Proses produksi kloroform dilakukan melalui beberapa tahap sebagai berikut:

1. Tahap Persiapan Bahan Baku

Kalsium hipoklorit bentuk padatan disimpan dalam gudang penyimpanan (F-111) pada suhu 30°C dan tekanan 1 atm. Kalsium hipoklorit diangkut dengan menggunakan screw conveyor (J-112) untuk diumpankan ke mixing tank (M-110). Pada mixing tank (M-110), kalsium hipoklorit dicampurkan dengan air menjadi larutan kalsium hipoklorit, proses pencampuran dilakukan pada suhu 30°C tekanan 1 atm secara kontinu. Larutan kalsium hipoklorit dialirkan melewati heater 1 (E-122) hingga suhu 50°C menuju ke reaktor (R-120). Aseton yang berada dalam tangki penyimpanan (F-

123) juga dialirkan melewati *heater* (E-125) hingga suhu 50°C menuju ke reaktor (R-120).

2. Tahap Pembuatan Kloroform

Aseton dan kalsium hipoklorit direaksikan di reaktor alir tangki berpengaduk (R-120) pada suhu 50°C dan tekanan 1 atm. Reaksi berlangsung pada fase cair-cair. Reaksi ini bersifat eksotermis sehingga digunakan koil pendingin untuk menjaga suhu tetap pada kondisi 50°C. Reaksi aseton dengan kalsium hipoklorit membentuk hasil produk kloroform dan hasil samping berupa kalsium asetat dan kalsium hidroksida. Reaksi yang terjadi pada pembuatan kloroform sebagai berikut:

$$\begin{split} 2(CH_3)_2CO_{(l)} + 3Ca(OCl)_{2(aq)} \\ & \to 2CHCl_{3(l)} + (CH_3COO)_2Ca_{(aq)} \\ & + 2Ca(OH)_{2(aq)} \end{split}$$

3. Tahap Pemisahan dan Pemurnian

Hasil keluaran dari reaktor (R-120) berupa aseton sisa, kalsium hipoklorit sisa, kloroform, kalsium asetat, kalsium hidroksida, air, dan natrium klorida yang merupakan *impurities* dari bahan baku. Campuran tersebut kemudian dialirkan melewati pendingin (E-131) sehingga suhunya menjadi 30°C,

lalu menuju dekanter (D-130) untuk dilakukan pemisahan produk. Dalam dekanter (D-130) terjadi fasa cairan pemisahan dua berdasarkan kelarutannya, antara produk samping yang terdiri dari aseton sisa, kalsium hipoklorit sisa, kalsium asetat, kalsium hidroksida, air, dan natrium klorida vang merupakan fase ringan dengan produk utama yaitu kloroform yang merupakan fase berat. Cairan produk atas dari dekanter (D-130) yang merupakan fase ringan dialirkan ke unit pengolahan limbah, sedangkan produk bawah dari dekanter berupa kloroform dengan kemurnian 99% kemudian dimasukkan ke tangki produk (F-134).

III. Neraca Massa

Berdasarkan perhitungan neraca massa, proses produksi kloroform dengan kapasitas 11.000 ton/tahun membutuhkan bahan baku aseton sebesar 846,71 kg/jam dan kalsium hipoklorit sebesar 4769,29 kg/jam. Pabrik ini akan dirancang dengan waktu operasi selama 330 hari/tahun dengan lama jam kerja 24 jam/hari.

IV. Neraca Energi

Berdasarkan perhitungan neraca energi, proses produksi kloroform dengan kapasitas 11.000 ton/tahun membutuhkan total energi sebesar 7402378,3948 kJ yang dimana kebutuhan energi untuk beberapa alat utama seperti *Mixing Tank* sebesar 377341,6931 kJ, *Heater* 1 sebesar 1883060,5386 kJ, *Heater* 2 sebesar 48086,4815 kJ, Reaktor sebesar 2838730,5357 kJ, *Cooler* sebesar 1828922,807 kJ, dan Dekanter sebesar 366408,0407 kJ.

V. Utilitas

Unit utilitas merupakan sarana penunjang dalam suatu industri kimia yang sangat penting agar suatu proses industri dapat berjalan dengan lancar serta efektif dan efisien. Penyediaan utilitas pada pabrik kloroform meliputi unit penyediaan dan pengolahan air, unit penyediaan steam, unit penyediaan tenaga listrik, unit penyediaan bahan bakar, dan unit pengolahan limbah. Berikut merupakan kebutuhan utilitas pada pabrik kloroform:

Tabel 4. Kebutuhan Utilitas Pabrik Kloroform

VI. Evaluasi Ekonomi

Berdasarkan perhitungan ekonomi, biaya yang dibutuhkan untuk mendirikan pabrik kloroform disajikan dalam tabel sebagai berikut:

Tabel 5. Total Biaya Pabrik Kloroform

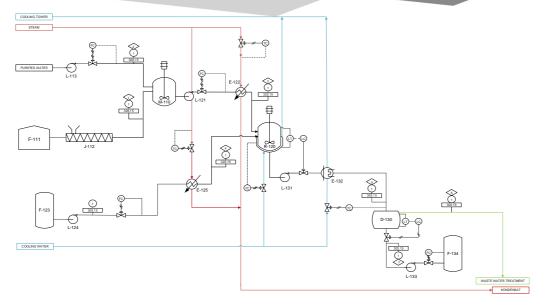
No.	Jenis Biaya	Jumlah (US \$)
1.	FCI	14.272.308,33
2.	WCI	1.585.812
3.	TCI	15.858.120,37
4.	TPC	204.224.553

Melalui evaluasi ekonomi pada pabrik kloroform ini maka akan diketahui kelayakan pendirian pabrik serta mengetahui keuntungan yang dihasilkan. Pabrik dianggap layak didirikan jika dapat beroperasi dengan baik dan memberikan keuntungan. Berikut merupakan hasil evaluasi ekonomi pada pabrik kloroform yang akan didirikan:

Tabel 6. Evaluasi Ekonomi Pabrik Kloroform

No.	Analisis	Nilai	Batas	Keterangan
1.	ROR	84,45%	> 8,8%	Layak
2.			40% <	
	BEP	48,02%	BEP <	Layak
			50%	
3.	POT	1,208 tahun	< 5 tahun	Layak

Pay Out Time (POT) adalah waktu yang dibutuhkan untuk melunasi seluruh pinjaman dan bunganya. Break Even Point (BEP) dapat diartikan sebagai titik impas yang menunjukkan persentase kapasitas yang harus dicapai agar seluruh pinjaman lunas terbayar atau untuk mengetahui persentase kapasitas ketika biaya produksi total sama dengan total penjualan. Rate of Return (ROR) merupakan laju pengembalian modal yang didapat dari rasio antara laba bersih setelah pajak dengan total modal yan


g dibutuhkan. (Kusnarjo, 2010).

No.	Jenis	Jumlah
	Kebutuhan	
1.	Air	64981,5380 kg/jam
2.	Steam	841,3691 kg/jam
3.	Listrik	53,9888 kW/jam
4.	Bahan bakar	32,4303 kg/jam

Gambar 1. Grafik BEP Pabrik Kloroform

V	Aliran (kg/jam)						
Komponen	F1	F2	F3	F4	F5	F6	F7
Ca(OCI)2	3100,04		3100,04		403,00	403,00	
NaCl	1430,79		1430,79		1430,79	1430,79	
H_2O	238,46	15897,62	16136,09	8,47	16144,55	16130,66	13,89
(CH ₃) ₂ CO				838,24	108,97	108,97	
Ca(OH) ₂					930,44	930,44	
Ca(CH ₃ COO) ₂					993,31	993,31	
CHCI ₃					1502,54	127,54	1375,00
Total	4769.29	15897.62	20666.91	846.71	21513.61	20124.72	1388.89

Nama Alat	Entalpi Masuk (ΔH in)	Entalpi Keluar (AH out)
Gudang Penyimpanan Kalsium Hipoklorit (F-111)	43572,5763	43572,5763
Mixing Tank (M-110)	377341,6931	377341,6931
Heater 1 (E-122)	1883060,5386	1883060,5386
Tangki Penyimpanan Aseton (F-123)	9479,2647	9479,2647
Heater 2 (E-125)	48086,4815	48086,4815
Reaktor (R-120)	2838730,5357	2838730,5357
Cooler (E-132)	1828922,807	1828922,807
Dekanter (D-130)	366408,0407	366408,0407
Tangki Penyimpanan Kloroform (F-134)	6776,4576	6776,4576
Total	7402378,3948	7402378,3948

Kode Alat	Nama Alat
M-110	Mixing Tank
F-111	Gudang Penyimpanan Kalsium Hipoklorit
J-112	Screw Conveyor
L-113	Pompa 1
R-120	Reaktor
L-121	Pompa 2
E-122	Heater 1
F-123	Tangki Penyimpanan Aseton
L-124	Pompa 3
E-125	Heater 2
D-130	Dekanter
L-131	Pompa 4
E-132	Cooler
L-133	Pompa 5
F-134	Tangki Penyimpanan Kloroform

7	Simbol	Alat
	\bigcirc	Tekanan Arus
		Suhu
	\Diamond	Nomor Arus
+		Arus Utama
1		Indikator Elektrik
4		Udara Tekan
1	Ŕ	Control Valve
	FC	Flow Control
	TC	Temperature Control
	LC	Level Control
	LT	Level Measurement

Gambar 2. Diagram Alir Proses Pabrik Kloroform dari Aseton dan Kalsium Hipoklorit

VII. Kesimpulan

Pra-rancangan pabrik kloroform direncanakan berdiri di Provinsi Banten tepatnya Kabupaten Serang dan mulai beroperasi pada tahun 2028. Pabrik beroperasi secara kontinu 24 jam selama 330 hari/tahun dengan kebutuhan tenaga keria untuk menjalankan operasi pabrik sebanyak 158 orang. Dari evaluasi ekonomi, diperoleh Annual Cash Flow (ACF) sebesar 93,45%, waktu pengembalian modal selama 4 tahun, Pay Out Time (POT) sebesar 1,208 tahun, Rate of Return (ROR) sebesar 84,45%, dan Break Even Point (BEP) sebesar 48,02%. Dari hasil uraian di atas, ditinjau dari segi teknis, ekonomis, dan lingkungan, dapat disimpulkan bahwa pabrik kloroform dari aseton dan kalsium hipoklorit ini layak didirikan.

DAFTAR PUSTAKA

Badan Pusat Statistik. (2023). *Ekspor dan Impor*. https://www.bps.go.id/exim/

Bayu, A. F. (2013). Prarancangan Pabrik Kloroform dari Aseton dan Kaporit kapasitas 30.000 Ton/Tahun. Universitas Muhammadiyah Surakarta.

IndexBox. (2023). Chloroform (Trichloromethane) - World.

https://app.indexbox.io/table/290313/0/

Kusnarjo. (2010). Ekonomi Teknik. ITS Press.

Mongan, B. A. (2023). Prarancangan Pabrik Kloroform dari Aseton dan Bleaching Liquor dengan Kapasitas 155 Ton/Tahun. Universitas Bosowa.