Potential of Trace Elements in Volcanic Highlands: Geogenic Sources and Their Implications for Productivity
Abstract
This study investigates the mineralogical composition and trace element potential of volcanic highland soils in Kejajar District, Wonosobo, Central Java, an area that has experienced long-term horticultural intensification. Volcanic Andisols in this region are known for high fertility but also carry risks of trace element accumulation due to complex mineralogy and intensive land use. Bulk powder X-ray diffraction identified feldspar, epidote, apatite, pyrite, and clay minerals, which may release essential (Zn, Cu, Fe, Mn) and toxic (Cd, Pb, As) elements through natural weathering and agricultural activities. Results show that horticultural soils on 9–15% slopes exhibited the highest HCl 25%-extractable P (224.70 mg/100 g). At the same time, shrubland soils also displayed high values (179.74 mg/100 g), indicating contributions from both fertilizer and geogenic sources. Although horticultural soils had higher chemical fertility, the shrubland maintained better physical (bulk density, 0.78 g/cm³) and biological quality (soil respiration, 36.48 mg C/kg/day). Productivity trends further highlight risks: cabbage yields declined by 41% (2020–2023), and potato production dropped by 11% (2017–2021). These findings demonstrate the dual role of geogenic and anthropogenic inputs in shaping soil quality and productivity. Sustainable management requires integrated strategies, including trace element monitoring, pH regulation, organic matter enhancement, and the use of low-contaminant fertilizers, to ensure long-term agroecosystem resilience in volcanic highlands.
References
Acharya, A., Singh, R., Verma, P., Sahoo, P. K., & Mukhopadhyay, M. 2023. The status and prospects of phytoremediation of heavy metals. Environmental Pollution, 325, 121360. https://doi.org/10.1016/j.envpol.2023.121360.
Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. 2015. Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2.
Alloway, B. J. 2013. Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Springer. https://doi.org/10.1007/978-94-007-4470-7.
Badan Pusat Statistik Provinsi Jawa Tengah. 2022. Provinsi Jawa Tengah dalam Angka 2022. BPS Provinsi Jawa Tengah. Retrieved fom https://jateng.bps.go.id.
Badan Pusat Statistik Kabupaten Wonosobo. 2020. Kabupaten Wonosobo dalam Angka 2020. BPS Kabupaten Wonosobo. Retrieved fom https://wonosobokab.bps.go.id.
Badan Pusat Statistik Kabupaten Wonosobo. 2021. Kabupaten Wonosobo dalam Angka 2021. BPS Kabupaten Wonosobo. Retrieved fom https://wonosobokab.bps.go.id.
Badan Pusat Statistik Kabupaten Wonosobo. 2022. Kabupaten Wonosobo dalam Angka 2022. BPS Kabupaten Wonosobo. Retrieved fom https://wonosobokab.bps.go.id.
Badan Pusat Statistik Kabupaten Wonosobo. 2023. Kabupaten Wonosobo dalam Angka 2023. BPS Kabupaten Wonosobo. Retrieved fom https://wonosobokab.bps.go.id.
Balai Pengkajian Teknologi Pertanian Jawa Timur. 2009. Inovasi teknologi varietas padi. Malang: Balai Pengkajian Teknologi Pertanian Jawa Timur. Retrieved fom https://digilib.brmpkementan.id/pengelolahasil/index.php?p=show_detail&id=9971&keywords=
Barrios, E. 2007. Soil biota, ecosystem services and land productivity. Ecological Economics, 64(2), 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004.
Batey, T. 2009. Soil compaction and soil management—a review. Soil Use and Management, 25(4), 335–345. https://doi.org/10.1111/j.1475-2743.2009.00236.
Brady, N. C., & Weil, R. R. 2016. The Nature and Properties of Soils (15th ed.). Pearson Education.
Cao, X., Song, J., Zhou, C., & Li, X. 2021. Environmental impacts of sulfide oxidation in soils: A review. Chemosphere, 282, 130928. https://doi.org/10.1016/j.chemosphere.2021.130928.
Carter, M. R., & Gregorich, E. G. (Eds.). 2008. Soil Sampling and Methods of Analysis (2nd ed.). CRC Press.
Condron, L. M., Turner, B. L., & Cade-Menun, B. J. 2005. Nature and dynamics of soil organic phosphorus. In J. T. Sims & A. N. Sharpley (Eds.), Phosphorus: Agriculture and the environment (pp. 87–121). ASA–CSSA–SSSA. https://doi.org/10.2134/agronmonogr46.c8.
Dahlgren, R. A., Saigusa, M., & Ugolini, F. C. 2004. The nature, properties and management of volcanic soils. Advances in Agronomy, 82, 113–182. https://doi.org/10.1016/S0065-2113(03)82003-5.
de Vries, F. T., Hoffland, E., van Eekeren, N., Brussaard, L., & Bloem, J. 2013. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 66, 115–123. https://doi.org/10.1016/j.soilbio.2013.07.003.
Deer, W. A., Howie, R. A., & Zussman, J. 2013. An Introduction to The Rock-Forming Minerals (3rd ed.). Mineralogical Society.
Enesi, R. O., Dyck, M., Chang, S., Thilakarathna, M. S., Fan, X., Strelkov, S., & Gorim, L. Y. 2023. Liming remediates soil acidity and improves crop yield and profitability – a meta-analysis. Frontiers in Agronomy, 5, Article 1194896. https://doi.org/10.3389/fagro.2023.1194896.
FAO. 2000. Guidelines and References for Soil Fertility and Management. Food and Agriculture Organization of the United Nations.
FAO. 2017. Voluntary Guidelines for Sustainable Soil Management. Food and Agriculture Organization of the United Nations.
Fan, J., He, Z., Ma, L. Q., Stoffella, P. J., & Yang, X. 2016. Effects of topography on soil erosion and trace metal transport. Geoderma, 273, 31–39. https://doi.org/10.1016/j.geoderma.2016.12.017.
Hamza, M. A., & Anderson, W. K. 2005. Soil compaction in cropping systems: A review of causes, consequences and solutions. Soil & Tillage Research, 82(2), 121–145. https://doi.org/10.1016/j.still.2004.08.009.
He, X., Augusto, L., Goll, D. S., Achat, D. L., Chenu, C., Dignac, M.-F., ... & Jackson, R. B. (2023). Global patterns and drivers of phosphorus fractions in natural soils. Biogeosciences, 20(18), 4147–4163. https://doi.org/10.5194/bg-20-4147-2023.
Hillel, D. 1998. Environmental Soil Physics. Academic Press.
Hochstein, M. P., Sudarman, S., & Subroto, S. 2015. Geothermal resources of Indonesia: An update report. Geothermics, 55, 76–88. https://doi.org/10.1016/j.geothermics.2015.01.002.
Hopit, M., Susana, R., & Astina. 2020. Pengaruh pemberian dolomit dan berbagai dosis pupuk fosfat terhadap pertumbuhan dan hasil tanaman kacang tanah pada tanah gambut. Jurnal Sains Pertanian Equator, 10(4). https://doi.org/10.26418/jspe.v10i4.49050 .
Hu, X., Yang, Y., & Zhao, H. 2020. Geogenic sources of heavy metals in volcanic soils: Implications for tropical highland agriculture. Journal of Geochemical Exploration, 213, 106553. https://doi.org/10.1016/j.gexplo.2020.106553.
Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants (4th ed.). CRC Press.
Kasno, A. 2020. Perbaikan tanah untuk meningkatkan efektivitas dan efisiensi pemupukan berimbang dan produktivitas lahan kering masam. Jurnal Sumberdaya Lahan, 13(1), 27–40. https://doi.org/10.21082/jsdl.v13n1.2019.27-40.
Kuzyakov, Y. 2006. Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38(3), 425–448. https://doi.org/10.1016/j.soilbio.2005.08.020.
Lal, R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875–5895. https://doi.org/10.3390/su7055875.
Liu, Y., Zhang, X., Wang, Y., Li, M., & Huang, C. 2023. Dynamics of heavy metal accumulation in horticultural soils of volcanic highlands. Science of the Total Environment, 885, 164905. https://doi.org/10.1016/j.scitotenv.2023.164905.
Mandal, P., Saha, D., Das, S., & Hazra, G. 2024. Emerging techniques for soil heavy metal remediation under agroecological conditions. Environmental Research, 238, 117188. https://doi.org/10.1016/j.envres.2024.117188.
McDowell, R. W., et al. (2001). Processes controlling soil P loss at various scales. Journal of Environmental Quality, 30(2), 508–520. https://doi.org/10.2134/jeq2001.302170x.
Nanzyo, M. 2002. Unique properties of volcanic ash soils. Global Environmental Research, 6(2), 99–112.
Nurcholis et al, 2018. Teknik Preparasi Sampel dalam Analisis Mineralogi dengan XRD (X-Ray Diffraction), Laboratorium XRD, UPN “Veteran” Yogyakarta.
Parfitt, R. L. 2009. Anion adsorption by soils and soil materials. Advances in Agronomy, 30, 1–50. https://doi.org/10.1016/S0065-2113(08)60780-7.
Puspitasari, I. A., Septiana, M., & Razie, F. 2024. Pengaruh pemberian pupuk guano dan dolomit terhadap ketersediaan unsur hara posfor pada tanah podsolik. Acta Solum, 2(1), 1–6. https://doi.org/10.20527/actasolum.v2i1.2273.
Rahayu, T., Prasetyo, B. H., & Utami, S. R. 2023. Geo-accumulation index of cadmium in Wonosobo horticultural soils: Implications for public health. Environmental Monitoring and Assessment, 195, 551. https://doi.org/10.1007/s10661-023-11111-2.
Raich, J. W., & Tufekcioglu, A. 2000. Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1), 71–90. https://doi.org/10.1023/A:1006112000616.
Rengel, Z. 2011. Soil pH, soil health and climate change. In B. P. Singh, A. L. Cowie, & K. Yagi (Eds.), Soil Health and Climate Change (pp. 69–85). Springer. https://doi.org/10.1007/978-3-642-20256-8_4.
Sánchez, P. A. 2019. Properties and management of soils in the tropics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781316809785.
Sánchez España, F., Yusta, I., & Diez-Ercilla, M. 2011. Adsorption of trace metals onto epidote and related minerals under acidic conditions. Applied Geochemistry, 26(4), 556–565. https://doi.org/10.1016/j.apgeochem.2010.12.012.
Shoji, S., Nanzyo, M., & Dahlgren, R. 1993. Volcanic ash soils: Genesis, properties and utilization. Elsevier. https://doi.org/10.1016/S0166-2481(08)70268-X.
Simpson, G., & Tillick, R. I. 1999. Volcano Hazards. United States Geological Survey (USGS). U.S. Department of the Interior.
Six, J., Bossuyt, H., Degryze, S., & Denef, K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79(1), 7–31. https://doi.org/10.1016/j.still.2004.03.008.
Six, J., Conant, R. T., Paul, E. A., & Paustian, K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789.
Smedley, P. L., & Kinniburgh, D. G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5.
Sparks, D. L. 2003. Environmental Soil Chemistry (2nd ed.). Academic Press.
Tiessen, H., Cuevas, E., & Chacon, P. 1994. The role of soil organic matter in sustaining soil fertility. Nature, 371(6500), 783–785. https://doi.org/10.1038/371783a0.
Ulrich, A., Becker, R., & Buscot, F. 2019. Soil fungal community structure and function in agricultural soils of Central Europe. Frontiers in Microbiology, 10, 698. https://doi.org/10.3389/fmicb.2019.00698.
Velde, B. 1995. Origin and mineralogy of clays. Springer. https://doi.org/10.1007/978-3-662-03120-8.
Wang, L., Zhang, X., Liu, M., Zhang, L., & Li, Y. 2023. Trace elements redistribution by topography feedback in mountainous agricultural zones. Frontiers in Environmental Science, 12, 1291917. https://doi.org/10.3389/fenvs.2024.1291917.
Wibowo, H., & Budi, S. 2014. Karakteristik dan pengelolaan tanah Andisol untuk pertanian di Indonesia. Jurnal Tanah dan Lingkungan, 16(2), 55–62.
Yang, Y., & Hu, X. 2021. Mobilization of heavy metals from volcanic parent materials during soil formation. Journal of Soils and Sediments, 21, 4232–4243. https://doi.org/10.1007/s11368-021-02947-2.
Zeng, Q., Chen, M., & Li, S. 2022. Impact of fertilizer and pesticide inputs on heavy metal accumulation in high-altitude farms. Sustainability, 14(8), 4720. https://doi.org/10.3390/su14084720.
Zhang, J., Liu, J., Huang, H., & Wang, R. 2020. Effects of long-term fertilization on soil nutrient contents and microbial communities. Applied Soil Ecology, 147, 103364. https://doi.org/10.1016/j.apsoil.2019.103364.
Zhao, F., Wang, X., Li, M., & Yang, H. 2020. Geochemistry of apatite in volcanic soils: Implications for trace element release. Journal of Geochemical Exploration, 212, 106517. https://doi.org/10.1016/j.gexplo.2020.106517.
Copyright (c) 2025 imas masithoh devangsari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.