Pengaruh Tinggi Muka Air Tanah Gambut terhadap Evolusi Gas CO2

  • Sigit Aji Wiyatno Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Lambung Mangkurat
  • Abdul Hadi Universitas Lambung Mangkurat
  • Zuraida Titin Mariana Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Lambung Mangkurat
Keywords: CO2 gas evolution, Peat soil, Water level

Abstract

This study aims to determine the effect of the groundwater level on the evolution of CO2 in peat soils if the groundwater table is lowered from a depth of 40 cm (PP No. 57 of 2016 concerning protection and management of peat ecosystems) to a depth of 60 cm. This study was conducted in a greenhouse and Laboratory of Physics, Chemistry and Biology Department of Soil, Agriculture Faculty, ULM. This study was began in October 2021 and continued until February 2022. The research method used was a factorial Completely Randomized Design (CRD) with four replications. The factors tested were the water table of the peat at a depth of 0 cm just above the soil surface (T1), 20 cm below the soil surface (T2), 40 cm below the soil surface (T3), and 60 cm below the soil surface (T4). The results of this study showed that the CO2 evolution of peat soil during incubation for 1, 2, 3, 7, 14, 21, and 28 days at a depth of 20 cm was not significantly different from a depth of 40 cm and 60 cm, but significantly different when the groundwater level was right at the surface soil. The CO2 evolution of peat soils at groundwater levels at the soil surface was lower than water levels 20, 40, and 60 cm below the ground.

References

Astiani, D., Widiastuti, T., Ekamawanti, H.A., Ekyastuti, W., Roslinda, E., Mujiman. 2022. The partial contribution of CO2-emission losses from subsidence in small-holder oil palm plantation on a tropical peatland in West Kalimantan, Indonesia. Biodiversitas 23(12), 6539-6545. https://doi.org/10.13057/biodiv/d231252

Boonman, J., Hefting, M.M., van Huissteden, C.J.A., van den Berg, M., van Huissteden, J., Erkens, G., Melman, R., van der Velde, Y. 2022. Cutting peatland CO2 emissions with water management practices. Biogeosciences, 19, 5707–5727. https://doi.org/10.5194/bg-19-5707-2022

Dadap, N.C., Cobb, A.R., Hoyt, A.M., Harvey, C.F., Feldman, A.F., Im, E.S., Konings, A.G. 2022. Climate change-induced peatland drying in Southeast Asia. Environ. Res. Lett. 17, 074026. https://doi.org/10.1088/1748-9326/ac7969

Harenda, K.M., Lamentowicz, M., Samson, M., Chojnicki, B.H. 2018. The role of peatlands and their carbon storage function in the context of climate change. In: Zielinski, T., Sagan, I., Surosz, W. (eds) Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71788-3_12

Hodgkins, S.B., Richardson, C.J., Dommain, R,. Wang, H., Glaser, P.H., Verbeke, B., Winkler, B.R., Cobb, A.R., Rich, V.I., Missilmani, M., Flanagan, N., Ho, M., Hoyt, A.M., Harvey, C.F., Vining, S.R., Hough, M.A., Moore, T.R., Richard, P.J.H., De La Cruz, F.B., Toufaily, J., Hamdan, R., Cooper, W.T., Chanton, J.P. 2018. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat Commun 9, 3640. https://doi.org/10.1038/s41467-018-06050-2

Lestari, Y., Mukhlis. 2021. Peatland water conservation by agroforestry system. E3S Web of Conferences 305, 03004. https://doi.org/10.1051/e3sconf/202130503004

Li, Q., Leroy, F., Zocatelli, R., Gogo, S., Jacotot, A., Guimbaud, C., Laggoun-Defarge, F. 2021. Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biology and Biochemistry 153, 108077. https://doi.org/10.1016/j.soilbio.2020.108077

Noor, M. 2010. Lahan Gambut Pengembangan Konservasi, dan Perubahan Iklim. Gadjah Mada University Press, Yogyakarta .

Nugroho, A., Susanto, Y.B., Kamilah, V.L., Prameswari, R. 2023. Carbon dioxide (CO2) absorption process using sodium hydroxide (NaOH). Iptek The Journal of Engineering 9(1), 30-34. http://dx.doi.org/10.12962/j23378557.v9i1.a15192

Nurzakiah, S., Nurita., Nursyamsi, D. 2016. Water management “tabat system” in carbon dioxide mitigation and vulnerability to fire on peatland. J Trop Soils 21(1), 41-47. https://doi.org/10.5400/jts.2016.21.1.41

Nusantara, R.W., Hazriani, R., Suryade, U.E. 2018. Water-table depth and peat subsidence due to land-use change of peatlands. IOP Conf. Series: Earth and Environmental Science 145, 012090. https://doi.org/10.1088/1755-1315/145/1/012090

Ojanen, P., Minkkinen, K. 2019. The dependence of net soil CO2 emissions on water table depth in boreal peatlands drained for forestry. Mires and Peat 24, 1-8. https://doi.org/10.19189/MaP.2019.OMB.StA.1751

Peraturan Pemerintah No. 57 Tahun 2016. 2016. Perlindungan dan Pengelolaan Ekosistem Gambut. Republik Indonesia.

Sanjaya, H., Kurniawan, A., Ickwantoro, I., Alfansani, A.R., Kusrini., Maulina, D. 2023. Prediksi jumlah kejadian titik panas pada lahan gambut di Indonesia menggunakan prophet. Infotech 9(2), 354-360. https://doi.org/10.31949/infotech.v9i2.6073

Schut, S.R., Westbrook, C.J. 2022. Variations in the water storage capacity of a mountain peatland with complex stratigraphy. Journal of Hydrology 615(A), 128614. https://doi.org/10.1016/j.jhydrol.2022.128614

Sungkin, F.J., Suswati, D., Gafur. S. 2023. Kajian sifat kimia tanah pada tiga tipe penggunaan lahan gambut di Desa Wajok Hilir Kecamatan Siantan Kabupaten Mempawah. Jurnal Sains Pertanian Equator 12(4), 873-880.

Published
2024-03-25
How to Cite
Wiyatno, S., Hadi, A., & Mariana, Z. (2024). Pengaruh Tinggi Muka Air Tanah Gambut terhadap Evolusi Gas CO2. Acta Solum, 2(2), 65-71. https://doi.org/10.20527/actasolum.v2i2.2436
Section
Articles